

Florida Solar Energy Center • November 1-4, 2005

Bimetallic Catalysts for the Electro-oxidation of Hydrocarbon Fuels

Lisa McElwee-White University of Florida

Start Date = 1 January 2004
Planned Completion = 31 December 2007

Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

Objective:

Synthesize heterobimetallic complexes and evaluate them as catalysts for methanol electrooxidation as a model for direct utilization of hydrocarbons in fuel cells

Crucial Questions:

- Can the function of bulk Pt/Ru alloy be reproduced in a simple complex using much less precious metal?
- Can simple complexes immobilized on anodes serve as electrocatalysts for fuel cells?
- Can cheaper, more readily available, more active first row transition metals be used in catalysts?

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

 For direct utilization of hydrocarbon fuels in fuel cells, state of the art is DMFC with Pt/Ru surface serving as anode catalyst

Relevance to NASA

 Future direct use of hydrocarbon fuels in fuel cells will require new catalysts and understanding of the reactions involved

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

Budget

\$ 40,000 for the grant period 10/1/05 to 3/31/07

Deliverables

1st Quarter: oxidation data from previously prepared Fe/Pt, Fe/Pd and

Fe/Au catalysts and comparison to Ru/Pt, Ru/Pd, Ru/Au

analogues

2nd Quarter: modified carbon paste electrodes with neutral catalysts

3rd Quarter: bulk electrolysis data from modified carbon paste

electrodes

4th Quarter: new Ru/Pt, Ru/Pd, Ru/Au, Fe/Pt, Fe/Pd and Fe/Au

catalysts with charged ligands

5th Quarter: modified Nafion electrodes with charged catalysts

6th Quarter: bulk electrolysis data from modified Nafion electrodes

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

 Results on single molecule catalysts and use of more active first row transition metals could be generally relevant to direct utilization of hydrocarbons in fuel cells

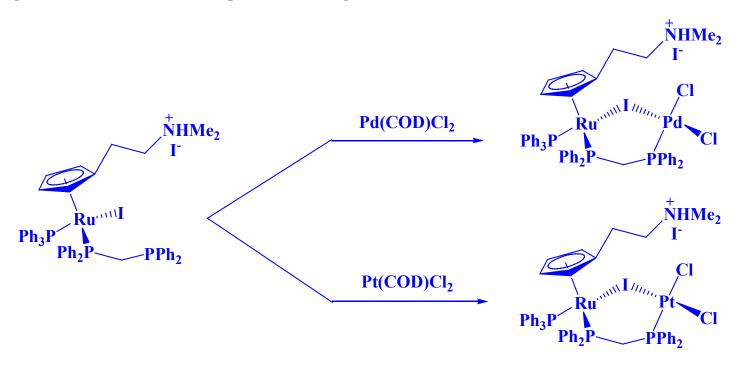
Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

Methanol as a model for more complex hydrocarbon fuels

Complex oxidation mechanism

Requires activation of C-H bonds

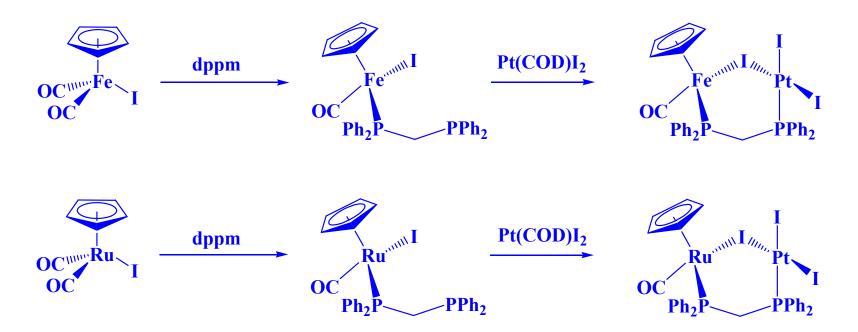


Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

Synthesis of Charged Catalysts for Modified Electrodes

 Positive charge facilitates incorporation into Nafion for preparation of modified electrodes

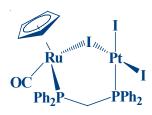


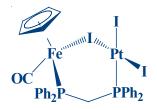
Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

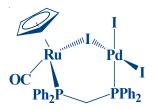
Synthesis of First and Second Row Metal Catalysts for Comparison

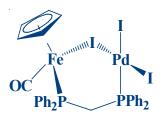
 Catalytic behavior of 1st row metal (Fe) can be compared to 2nd row (Ru)

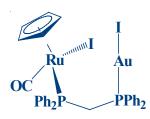


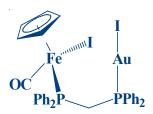

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results


Ru and Fe heterobimetallic complexes


$$v_{co}$$
= 1992 cm⁻¹


$$v_{co}$$
= 1984 cm⁻¹


$$v_{co} = 1980 \text{ cm}^{-2}$$

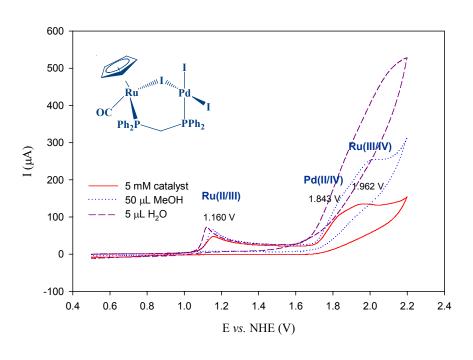
$$v_{\rm co}$$
= 1972 cm⁻¹

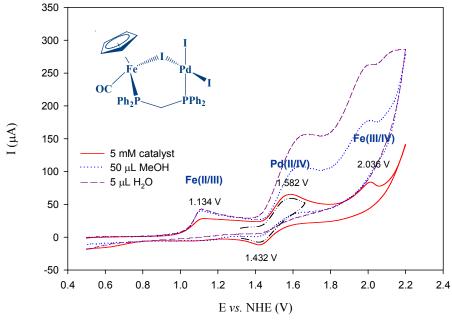
$$v_{co} = 1947 \text{ cm}^{-1}$$

$$v_{co}$$
= 1949 cm⁻¹

$$v_{co}$$
= 1958 cm⁻¹

$$v_{co}$$
= 1939 cm⁻¹

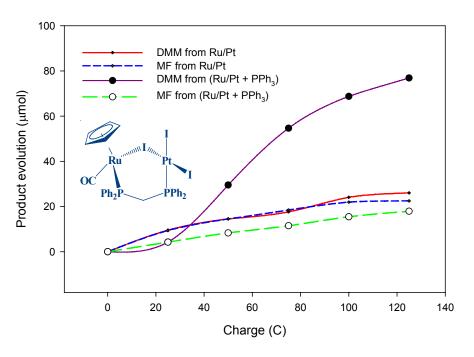


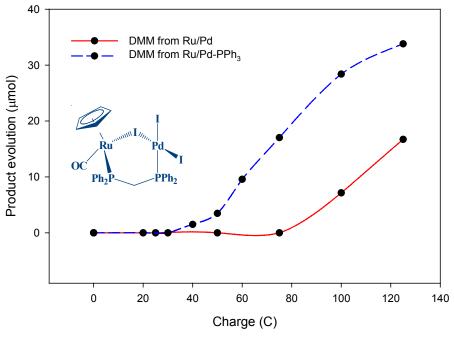


Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

Cyclic Voltammetry



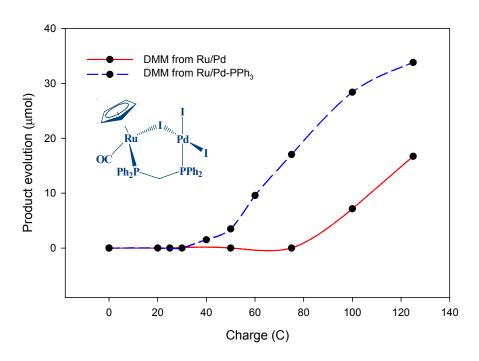

Florida Solar Energy Center • November 1-4, 2005

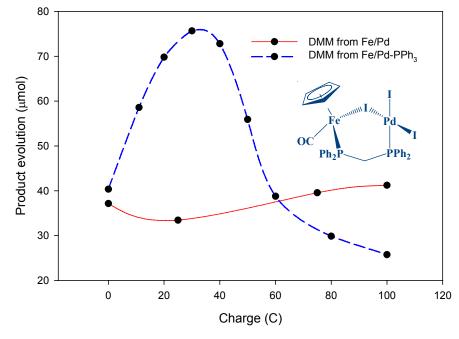
Accomplishments and Results

Bulk Electrolysis: Product Evolution for Electrooxidation of Methanol by Ru/Pt and Ru/Pd Heterobimetallic Complexes

DMM = $CH_2(OCH_3)_2$ 2 e⁻ oxidation

 $MF = HCO_2CH_3$ 4 e⁻ oxidation




Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

Bulk Electrolysis: Product Evolution for Electrooxidation of Methanol by Ru/Pd and Fe/Pd Heterobimetallic Complexes

DMM = $CH_2(OCH_3)_2$ 2 e⁻ oxidation

 $MF = HCO_2CH_3$ 4 e⁻ oxidation

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

Summary

- Heterobimetallic Ru/Pt, Ru/Pd, Ru/Au, Fe/Pt, Fe/Pd and Fe/Au complexes have been synthesized
- Cationic Ru/Pt and Ru/Pd complexes have been prepared for incorporation into Nafion films for fabrication of modified electrodes
- These heterobimetallic complexes have been demonstrated to be catalysts for the electrochemical oxidation of methanol
- Fe/Pt and Fe/Pd binuclear complexes are more active catalysts than their Ru/Pt and Ru/Pd analogues

Florida Solar Energy Center • November 1-4, 2005

Future Plans

- Fabricate carbon paste electrodes modified with neutral catalysts
- Fabricate modified electrodes using Nafion films impregnated with cationic catalysts
- Test modified electrodes for electrooxidation of methanol
- Continue synthesis of catalysts bearing first row metals
 - additional Fe/Pt, Fe/Pd, Ru/Ni, Fe/Ni complexes designed
- Evaluate performance of new catalysts for electrooxidation of methanol as a model for hydrocarbon systems